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ABSTRACT 

 

One chief aim of modern cosmology is to explain the sudden acceleration of the expansion of the 

Universe over the most recent few billion years.  Some believe the force needed to cause such a 

growth comes from a mysterious source called dark energy, which would have to comprise 

three-quarters of the energy density of the Universe in order to account for such force.  Other 

astrophysicists believe the answers lie in the mathematical equations used to describe spacetime.  

Called modified gravity, this approach offers alternatives to traditional general relativity.  This 

particular thesis is based on an      theory of gravity that includes a small alteration to the 

Einstein-Hilbert action used to derive the Einstein equations.  Computer simulations using these 

theoretical models suggest unique changes when compared to traditional general relativity, 

including a discrepancy in galactic masses.  When modified gravity is applied, new degrees of 

freedom arise from introduced scalar fields, creating a chameleon mechanism which allows 

matter to change its mass based on the local mass density of the region.  The dynamical mass of 

a galaxy, determined through the velocity dispersion, is therefore affected and becomes 

dependent on the local matter density.  While matter is affected by these new degrees of 

freedom, light is not.  Due to the light-bending properties of lensing galaxies, the unaffected 

lensing mass of a galaxy can still be determined, even when modified gravity is assumed.  When 

compared to each other, the lensing and dynamical masses of a single galaxy appear starkly 

different under modified gravity, making the lensing mass the perfect gauge from which to 

compare the effects of modified gravity.  The goal of this pilot study is to determine the 

feasibility of measuring this mass difference, to compare it to the differences measured in 

computer simulations, and to search for any environmental dependence in the difference. 
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1.  INTRODUCTION 

 

The buzz words “Dark Energy” prevail when it comes to explaining the sudden rapid expansion 

of the Universe discovered in the late 1990’s [Riess et al. 1998].  The popular press readily prints 

that Albert Einstein had been right all along with his idea of a cosmological constant (now 

generally associated with dark energy) to explain why gravity had not pulled the Universe back 

together after the Big Bang like a giant rubber band [Lemonick 2011].   The idea of a mysterious 

force tearing the Universe apart has serious ramifications, including the possibility of adding new 

species of energy that can only be observed indirectly.  Rather than continuing to look for 

evidence of a seemingly evasive force, a group of theorists decided to focus on the equations that 

describe the Universe.  By modifying these equations, the theoreticians hope to better model the 

expansion of the Universe without the need to introduce new forms of energy.  This is modified 

gravity: a mathematical manipulation of the fundamental equations that describe general 

relativity [Zhao et al. 2011a].   

 

1.1  f(R) THEORIES 

 

Modified gravity is a broad field encompassing many alternatives and alterations to general 

relativity.  This project focuses on a brand referred to as      theories of gravity that create 

variations to the Einstein-Hilbert action.  There are three main branches caused by assumptions 

made when deriving the Einstein equation using the variational principle.  The version focused 

on in this thesis comes from the metric formalism and adds a relatively small alteration to the 

action.  Having been called a toy theory for its simplicity, this simple form allows theorists to 

easily track the theory’s divergence from general relativity while still maintaining a level of 

generality to predict the results of more complex modifications [Sotiriou & Valerio 2010].   

 

The traditional Einstein-Hilbert action has the form [Sotiriou & Valerio 2010]: 

 

    
  

    
         (1) 
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where   is the speed of light in vacuum,   is the gravitational constant,   is the determinant of 

the Friedmann-Robertson-Walker (FRW) metric, and   is the Ricci scalar, which can be thought 

of as a measure of deviation from flat Euclidian space.  The FRW metric is an exact solution to 

the Einstein field equations which describe a homogeneous, isotropic universe.       theories 

force the action to become a function of the Ricci scalar [Sotiriou & Valerio 2010]: 

 

    
  

    
            (2) 

 

Though visually a small change, the new function greatly impacts the derivation of the Einstein 

equations, as seen below.  Through a variation of the original Einstein-Hilbert action, the 

traditional Einstein equation has the form [Hartle 2003]: 

 

     
   

  
    (3) 

 

where     is the Einstein curvature tensor (measure of spacetime curvature) and     is the 

stress-energy tensor (measure of matter energy density).  Normally the Ricci scalar is tied up in 

the Einstein curvature tensor as a constant.  Under modified gravity, the newly added function 

     adds a new term to the equation, such that [Zhao et al. 2011b]: 

 

         
   

  
    (4) 

 

where     is the modification to general relativity.  This term is given by [Zhao et al. 2011b]: 

 

               
 

 
                          (5) 

 

where       is the first derivative of the function,     is the Ricci curvature,     refers to the 

metric,   is the d’Alembertian, and      is the covariant derivative.  The exact solution to the 

Einstein equation is a line element that contains both time and spatial components.  The standard 

cosmological model is considered to be the FRW metric, whose perturbed line element in the 

Newtonian gauge appears as [Zhao et al. 2011a]: 

 

                                (6) 
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where    is the line element,   is the gravitational potential,   is the spatial curvature 

perturbation,    is the spatial component, and      is the scale factor which accounts for the 

expansion of the Universe.   

 

Finding the time-time component of the modified Einstein equation gives a Poisson equation of 

the form [Zhao et al. 2011a]: 

 

                (7) 

 

where   is the gravitational potential,   is the gravitational constant,   is the scale factor, and 

      is the effective energy density containing the modifications.  This equation is crucial to 

understanding the reasons for how the research methods discussed later can be used to show the 

effects of      modifications.  It can be shown that modified gravity affects potentials on the 

galactic scale.  By measuring the masses of galaxies, it becomes possible to search for evidence 

of modified gravity.   

 

1.2  EVIDENCE FROM GALAXY MASSES 

 

There are two basic techniques for measuring the mass of a galaxy, both of which are described 

in further detail in later sections.  The first method of determining the mass of a galaxy (called 

the dynamical mass) is by analyzing the total energy of the system.  Gravitational potential 

energy is a function of mass, meaning that in modified gravity, the potential gained from 

Equation (7) is different than in traditional relativity due to the modifications in      .  Therefore, 

the dynamical mass of a galaxy is changed when modified gravity is applied [Zhao et al. 2011a].   

 

The second technique for measuring the mass of a galaxy involves a phenomenon known as 

gravitational lensing.  Massive objects like galaxies bend spacetime and light around them, much 

as a lens refracts light.  The amount light is bent is a function of the mass of this lensing galaxy.  

This amount is described by the lensing potential and given by [Zhao et al. 2011a]: 

 

    
 

 
      (8) 
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where   is the gravitational potential and   is the spatial curvature perturbation.  The lensing 

potential satisfies Equation (7), recovering the matter density predicted by traditional general 

relativity [Zhao et al. 2011a].  This means light curves are not affected by modified gravity and 

can be used as a standard from which to compare.  As an analogy to a traditional science 

experiment, the lensing mass can be considered the control, with the dynamical mass as the 

experimentally determined value.   

 

1.3  THE CHAMELEON MECHANISM 

 

An integral aspect of this particular theory of      gravity is the inclusion of the chameleon 

mechanism.  Making the Einstein-Hilbert action into a function of the Ricci scalar creates 

degrees of freedom in the new scalar field.  The chameleon mechanism masks the effects of the 

modifications on the small scale, explaining why traditional, unmodified general relativity seems 

to work fine on and around Earth.  As the scale increases to the galactic level, the effects of 

modification become more prominent [Khoury & Weltman 2004].  On the small scale, the 

surrounding environment is relatively dense.  Defining an environment to encompass entire 

galaxy clusters requires the inclusion of the empty space in between, thus significantly lowering 

the density.  For instance, the mass density of Earth is on the order of            , whereas 

the mass density of the Milky Way galaxy is on the order of               [Sparke & 

Gallagher 2007].  Thus, the chameleon mechanism is dependent upon on the mass density of a 

region.  The chameleon becomes more prominent in dense regions to screen the effects in the 

scalar field.   

 

Through the chameleon mechanism, the effects of modified gravity become dependent on the 

regional mass density.  Returning to the lensing and dynamical masses, this also implies the 

difference between the masses is environmentally dependent.  As the density decreases on the 

large scale, the dynamical mass increases, causing the mass difference to increase.  Likewise, as 

the density increases, the mass difference decreases.  According to recent computer simulations, 

the masses’ percent difference could be as large as 30% in under-dense regions [Zhao et al. 

2011a].   
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Testing for the difference between the lensing and dynamical masses, and checking for an 

environmental dependence of the difference offers the opportunity to test this      theory of 

gravity observationally.  The rest of this thesis outlines the method used in this pilot study to test 

this theory, making use of data from the Sloan Digital Sky Survey Data Release 8.  The 

following sections describe choosing a data set, finding the lensing and dynamical masses, 

determining the difference between these masses, and defining a neighborhood in which to test 

for environmental dependence.  An analysis follows each section, describing potential errors and 

the significance of the findings.  Finally, a conclusion summarizes the results, including ideas for 

the future.   

 

2.  GALAXY SELECTION 

 

Knowing the methods used in calculating the masses of galaxies, it was necessary to choose a 

sample set of galaxies for which specific characteristics were known.  The most limiting set of 

factors came from the determination of the lensing mass.  In order to calculate this mass, the 

Einstein ring of the galaxy must be measureable, and the distance to the source galaxy must be 

known.  The largest single set of galaxies found was contained in Bolton et al. 2008a that 

contained all of the necessary components.  The Sloan Digital Sky Survey Data Release 8 (SDSS 

DR8) provided the rest of the information.  SDSS is a multinational collaboration that seeks to 

survey over one quarter of the night sky.  With a 2.5 meter telescope at Apache Point 

Observatory in New Mexico, the survey makes photometric and spectroscopic observations, 

including photography.  Released in January, 2011, DR8 includes 50TB of information on nearly 

500 million objects, including celestial coordinates, redshift, velocity dispersions, and more.  The 

survey covers the u, g, r, i, and z spectral bands, detecting wavelengths between 300 and 900 

nanometers [SDSS3.org].  SDSS is a natural choice due to the large amounts of data collected 

and the latest release of data having been just a few months prior to the beginning of this project.  

The galaxies from Bolton were cross-referenced with SDSS to exclude the luminous red 

galaxies, which are older galaxies at higher redshifts whose characteristics vary from those of the 

larger main type galaxies.  This cut was done to consider only one type of galaxy for 

consistency.  The final sample size included 44 galaxies.   
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3.  LENSING MASS 

 

As seen in Section 1, determination of the lensing mass is crucial to this project.  The lensing 

mass offers an invariant gauge from which to measure the impact of modified gravity.   

 

3.1  INTRODUCTION TO LENSING 

 

The image of a rubber sheet being stretched by a solar system is a popular way of showing how 

the gravitational fields of massive objects distort the continuum surrounding them.  Einstein 

postulated in his theories of relativity that these fields, when strong enough, could bend light 

around them.  While light may appear to be bending to the outside observer, light continues to 

travel in a straight line relative to the curvature of the distorted coordinate system which lies next 

to the mass, thus preserving the need for light to propagate in a straight line.  As light travels 

toward the object, the trajectory is bent inward and around the object, redirecting the light much 

as a traditional glass lens focuses light [Narayan & Bartlemann 2008].  Figure 1 below shows 

this behavior, where the blue dot is the observer, the red dot is the lens, the yellow dot is the 

source, and the green lines are the light rays. 

 

FIGURE 1:  EINSTEIN RINGS 

 

 

 

 

 

 

 

 

FIGURE 1:  The diagram shows the ability of a galaxy (red dot) to bend the light from a far source, like 

another galaxy (yellow dot).  Called gravitational lensing, it works much the same way as a traditional 

glass lens.  The blue dot on the left represents the Earth.  Assuming the three points are along the same 

line, if the observer and source are not located at the focal points of the lens, an Einstein ring will appear. 

Photo courtesy of National Aeronautics and Space Administration 
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A galaxy whose light has been gravitationally lensed will appear brighter on Earth than it would 

without the lens since more light from the galaxy is now reaching the observers.  When Earth is 

not sitting at the focal point of the lensing system, a ring of light appears around the lensing 

galaxy, represented by the green circle in Figure 1.  The radius of this ring is a function of the 

distances in the lensing system and the Schwarzschild radius, described below.  Called the 

Einstein radius, it can be derived by a series of geometric approximations stemming from the 

lensing system found in Figure 2 [Hartle 2003].   

 

FIGURE 2:  GRAVITATIONAL LENSING 

 

 

 

 

 

 

 

 

FIGURE 2:  Massive objects have the ability to bend light.  The blue O represents the observer, dark 

green S the source, light green I the image, and red L the lensing galaxy.     represents the angular 

diameter distance between the observer and lens (OL), observer and source (OS), and lens and 

source (LS).    is the angle between the axis and source,   is the angle between the axis and image, 

and   is the angle the light ray is bent.  The dark green line traces the path of light around the 

lensing galaxy, getting closest at a distance of b, the impact parameter.   

 

 

In Figure 2,   is the angle between the horizontal axis and the source (S),   is the angle to the 

image (I), and b is the point of closest approach to the lens (L) called the impact parameter.     

represents the angular diameter distance (or the fraction of the actual size of the object compared 

b 
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to its angular size seen from Earth) between observer and source      , observer and lens      , 

and lens and source      .  Due to the small angles involved in gravitational lensing, distances 

perpendicular to the line of sight can be found by multiplying the angle times the corresponding 

distance, which leads to     ,     , and     .  By similarity, the impact parameter b can be 

approximated by     .  The angle   represents the deflection angle of the light, which is 

proportional to the Schwarzschild radius.  This angle is given by [Hartle 2003]: 

 

   
 

 
   (9) 

 

where b is the impact parameter and    is the Schwarzschild radius.  The Schwarzschild radius is 

the radius of a spherical object of mass M whose escape velocity is the speed of light.  This 

means a particle would have to be travelling the speed of light in order to escape the gravitational 

pull of the mass.  The Schwarzschild radius of the Sun is smaller than the actual diameter, which 

is why the Sun shines.  A black hole, on the other hand, has a Schwarzschild radius larger than 

the actual diameter of the central mass, which explains why no light can escape.  The equation 

for the Schwarzschild radius, which is derived from an object’s gravitational potential is [Hartle 

2003]: 

 

    
   

  
 (10) 

 

where G is the gravitational constant, M is the mass of the object, and c is the speed of light.  

Returning to Figure 2, one can see the relationship between the distances perpendicular to the 

line of sight is [Hartle 2003]: 

 

                (11) 

 

With the newly approximated impact parameter substituted into Equation (9) for   and the 

assumption       for perfect Einstein rings, the equation for the Einstein radius becomes 

[Hartle 2003]: 

 

         
   

      
  

   

 (12) 
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Substituting the Schwarzschild radius from Equation (10) and a little manipulation gives the final 

lensing mass [Bolton et al. 2008b]: 

 

    
    

 

  

      

   
 (13) 

 

 

3.2  CALCULATING THE LENSING MASS 

 

The necessary components for finding the lensing mass of the galaxies in the sample set come 

exclusively from tables found in Bolton et al. 2008a.  In order to satisfy Equation (13), the 

spectroscopic redshifts for the source and lensing galaxies were converted to distances in meters 

using Ned Wright’s Cosmological Calculator [Wright 2006].  Substituting the appropriate values 

into Equation (13) yields masses that range from      to         (Solar masses), which is 

comparable to most main type galaxies.  Table 1 below shows the calculated lensing masses. 

 

TABLE 1:   CALCULATED LENSING MASSES 

ID Object ID Lensing Mass (  )  ID Object ID Lensing Mass (  ) 

1 1237657189834621096 1.528E+11 23 1237661355931730052 1.353E+11 

2 1237652947992838246 3.554E+11 24 1237654604261228656 2.033E+11 

3 1237666340797153365 9.915E+10 25 1237658611984433262 3.084E+11 

4 1237652901299814497 6.640E+11 26 1237658609296343089 1.622E+11 

5 1237649963533926655 2.794E+10 27 1237661972796014740 1.860E+11 

6 1237660957571940755 3.004E+11 28 1237671762641485915 2.286E+11 

7 1237657630585585808 1.479E+11 29 1237651252040761551 3.449E+11 

8 1237650796753322325 4.641E+11 30 1237648704589136004 1.148E+11 

9 1237660669813129348 1.777E+11 31 1237655371441832114 4.021E+10 

10 1237661065488761132 3.580E+11 32 1237661874024677506 7.090E+11 

11 1237653663647727743 7.380E+10 33 1237674478123417869 1.268E+11 

12 1237657632727302311 4.656E+11 34 1237654879128977672 6.771E+10 

13 1237657874332385424 2.114E+11 35 1237655691403657326 9.408E+10 

14 1237654601563373760 8.510E+10 36 1237655693018726805 3.183E+11 

15 1237661355924586681 2.820E+11 37 1237654949985321081 1.031E+11 

16 1237654605324550300 6.760E+10 38 1237661388689899825 3.712E+11 
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TABLE 1:   CALCULATED LENSING MASSES cont. 

ID Object ID Lensing Mass (  )  ID Object ID Lensing Mass (  ) 

17 1237657610723655845 1.245E+11 39 1237648672922862552 2.776E+11 

18 1237657590318432374 1.122E+11 40 1237655130375586208 6.279E+11 

19 1237658800422518913 9.857E+10 41 1237651715335127272 2.220E+11 

20 1237655109449220224 1.439E+11 42 1237656495644541104 3.081E+11 

21 1237658492814360790 2.033E+11 43 1237652900743938211 1.296E+11 

22 1237671128051220497 2.124E+11 44 1237663784195326209 2.712E+11 

 

TABLE 1:  ID numbers refer to arbitrarily assigned identification numbers for ease of reference.  Object 

ID refers to the identification number assigned by SDSS DR8.  The lensing masses are calculated with 

Equation (13) using parameters provided by Bolton et al. 2008a.  The masses are presented in    

(Solar masses).   

 

 

 

3.3  LENSING MASS UNCERTAINTY  

 

Determining the uncertainty in the lensing mass is a bit tricky due to the lack of established error 

values for the angular diameter distances, which are dependent upon spectroscopic redshift.  

Luckily, the SDSS database includes error values for the spectroscopic redshift.  As with finding 

the actual angular diameter distances using Ned Wright’s Cosmological Calculator [Wright 

2006], the error in spectroscopic redshift can be transformed into a distance and treated as an 

approximation for the error of the angular diameter distance.  To create a general absolute 

uncertainty in distance, the average spectroscopic redshift error was used in the Cosmological 

Calculator.  The relative uncertainty of each distance was obtained by dividing the absolute error 

in distance by the corresponding average distance.  The error for the Einstein angle was 

standardized at 2% by Bolton et al. 2008a.  Table 2 below shows the associated errors found 

from averaged values of the components.   
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TABLE 2:  LENSING MASS RELATIVE UNCERTAINTIES 

Einstein Angle:    0.02 

Spectroscopic Redshift:   0.0002047 

Observer-Source Distance:     0.0002569 

Observer-Lens Distance:     0.0001241 

Lens-Source Distance:     0.0001542 

Lensing Mass:    0.028 

 

TABLE 2:  The relative uncertainty for the Einstein angle was a 

generalized uncertainty coming from Bolton et al. 2008a.  The 

spectroscopic error was found in the SDSS DR8 database.  The redshift 

error was used in the Cosmological Calculator to find a general 

absolute distance error.  The relative uncertainties in distance were 

found by dividing by the absolute distance error by the average 

corresponding average distance.  The final uncertainty is 2.8% 

 

 

 

4.  DYNAMICAL MASS 

 

The second way to measure the mass of a galaxy is by analyzing the energy of the system.  This 

so-called dynamical mass of a galaxy has been shown to vary under the conditions instituted by 

the modification term.  Based on the chameleon mechanism, the magnitude of the dynamical 

mass is dependent upon the environmental matter density and could provide evidence for 

modified gravity.   

 

4.1  INTRODUCTION TO DYNAMICAL MASSES 

 

Analyzing the energy of a system involves a combination of the kinetic and potential energies.  

A form of the virial theorem, as seen below in Equation (14), provides a handy way of summing 

these two energies [Sparke & Gallagher 2007]: 

 

            (14) 
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where     is the average kinetic energy over time and     is the average potential energy over 

time.  When finding the energies of a galaxy, it is far more convenient to approach it as a 

uniformly dense sphere in a vacuum, sometimes referred to as a Plummer sphere in astrophysics.  

While usually the punch-line of a terrible physics joke, this approximation is appropriate given 

stellar dynamics and gravitational potential.   The standard kinetic energy can be applied to the 

movements of the stars within the galaxy, with regular velocity replaced by velocity dispersion.  

The motion of stars around the center of a galaxy creates Doppler shifts in their spectra, 

revealing the stars’ velocities.  The velocity dispersion is related to the standard deviation of 

these velocities [Carroll & Ostlie 2007].  Therefore, the kinetic energy can be written as [Sparke 

& Gallagher 2007]: 

 

     
 

 
   

   (15) 

 

where m is the mass of the galaxy,    is the galaxy’s velocity dispersion, and the factor of 3 out 

front represents the three spatial dimensions in which the galaxy’s component stars are free to 

move.  The potential energy term is a bit more complicated and begins with the standard two 

particle gravitational potential seen below: 

 

     
    

 
 (16) 

 

where   is the gravitational constant,    and    are the masses of two particles, and   is the 

distance between them.  Returning to the assumption that the galaxy is a sphere of uniform 

density, it becomes necessary to find the gravitational potential for a sphere.  Using    as the 

mass of the volume of a portion of the sphere at a radius of  ,    as a shell on the outside of the 

sphere with thickness   , and    as the sum of all of the potential energies for all of the shells, 

the equation for potential energy transforms into the following: 

 

     
 

 
 
 

 
               (17) 

 

where   is the radius of the calculated volume and   is the constant density of the sphere.  

Evaluating this expression from the center of the sphere to the edge for    , and re-expressing 
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the density as the quotient of mass and volume returns the gravitational potential for a sphere of 

mass   and radius   in Equation (18) [Carroll & Ostlie 2007]: 

 

    
 

 

   

 
 (18) 

 

Plugging Equations (15) and (18) into Equation (14) and manipulating the equation reveals the 

galactic mass shown below in Equation (19) [Sparke & Gallagher 2007]: 

 

     
   

     

 
 (19) 

 

where   is the mass of the galaxy,    is the velocity dispersion,      is the effective radius of the 

galaxy, and   is the gravitational constant.  The effective radius of a galaxy is the radial distance 

at which half of the total light produced by the galaxy comes from inside the distance.   

 

4.2  CALCULATING THE DYNAMICAL MASS 

 

The necessary components for calculating the dynamical mass come from a combination of the 

tables found in Bolton et al. 2008a and SDSS DR8.  The velocity dispersion and effective radius 

in arcseconds come from Bolton et al. 2008a.  The effective radius is measured in arcseconds, 

but   is a physical distance.  Replacing   with its geometric equivalent transforms Equation (19) 

into Equation (20): 

 

    
   

 

 
           (20) 

 

where   is the effective radius in radians and     is the angular diameter distance between the 

observer and the target galaxy.  As with the lensing masses, the masses range from       to      

  .  The final calculated dynamical masses can be found in Table 3.  These values are 

noticeably larger than the lensing mass values calculated in Section 3.  Potential problems with 

accurately measuring the velocity dispersion and identifying galaxy type could explain this 

phenomenon, and are discussed more thoroughly in Section 5.   
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TABLE 3:  CALCULATED DYNAMICAL MASSES 

ID Object ID Dynamical Mass (  )  ID Object ID Dynamical Mass (  ) 

1 1237657189834621096 4.559E+11 23 1237661355931730052 1.8051E+11 

2 1237652947992838246 6.352E+11 24 1237654604261228656 3.874E+11 

3 1237666340797153365 5.314E+11 25 1237658611984433262 8.040E+11 

4 1237652901299814497 1.569E+12 26 1237658609296343089 6.447E+11 

5 1237649963533926655 5.909E+10 27 1237661972796014740 4.474E+11 

6 1237660957571940755 5.153E+11 28 1237671762641485915 4.492E+11 

7 1237657630585585808 4.458E+11 29 1237651252040761551 7.577E+11 

8 1237650796753322325 1.413E+12 30 1237648704589136004 2.414E+11 

9 1237660669813129348 4.483E+11 31 1237655371441832114 1.464E+11 

10 1237661065488761132 6.593E+11 32 1237661874024677506 1.148E+12 

11 1237653663647727743 1.062E+11 33 1237674478123417869 6.007E+11 

12 1237657632727302311 1.032E+12 34 1237654879128977672 9.892E+10 

13 1237657874332385424 4.859E+11 35 1237655691403657326 3.653E+11 

14 1237654601563373760 1.515E+11 36 1237655693018726805 6.482E+11 

15 1237661355924586681 3.656E+11 37 1237654949985321081 2.184E+11 

16 1237654605324550300 1.519E+11 38 1237661388689899825 5.248E+11 

17 1237657610723655845 1.967E+11 39 1237648672922862552 6.366E+11 

18 1237657590318432374 2.227E+11 40 1237655130375586208 6.920E+11 

19 1237658800422518913 2.442E+11 41 1237651715335127272 3.506E+11 

20 1237655109449220224 3.619E+11 42 1237656495644541104 7.688E+11 

21 1237658492814360790 3.814E+11 43 1237652900743938211 4.805E+11 

22 1237671128051220497 9.264E+11 44 1237663784195326209 4.592E+11 

 

TABLE 3:  ID numbers refer to arbitrarily assigned identification numbers for ease of reference.  Object 

ID refers to the identification number assigned by SDSS DR8.  The lensing masses are calculated with 

Equation (20) using parameters provided by Bolton et al. 2008a.  The masses are presented in    (Solar 

masses).   

 

 

 

 

 

 

 



15 

 

4.3  DYNAMICAL MASS UNCERTAINTY 

 

As with the lensing mass, there exists no established error for angular diameter distance.  Once 

again, the error for this distance was approximated by using Ned Wright’s Cosmological 

Calculator  and the reported spectroscopic redshift error reported in SDSS DR8 [Wright 2006, 

SDSS3.org].  Bolton et al. 2008a also standardizes the errors for the effective radius and velocity 

dispersion at 3.5% and 7%, respectively.  Averaged values were once again used to find relative 

error, with printed values seen in Table 4.  The final uncertainty in the dynamical mass is 10.5%.   

 

TABLE 4:  DYNAMICAL MASS RELATIVE UNCERTAINTIES 

Velocity Dispersion:    0.07 

Spectroscopic Redshift:   0.0002047 

Observer-Lens Distance:     0.0001241 

Effective Radius:   0.035 

Dynamical Mass:    0.105 

 

TABLE 4:  The relative uncertainty for the velocity dispersion and 

effective radius come from Bolton et al. 2008a.  As with the 

determination of the relative uncertainty in the lensing mass, the 

angular diameter distance error is found using the spectroscopic 

redshift uncertainty from SDSS DR8.  The final uncertainty is 10.5%. 

 

 

 

5.  MASS DIFFERENCES 

 

Returning to the theories of modified gravity, there should exist a difference between the lensing 

masses calculated in Section 3 and the dynamical masses calculated in Section 4 caused by the 

chameleon mechanism.  According to Zhao et al. 2011a, the maximum allowed relative mass 

difference is 30%, which would appear on large galactic scales in low density regions.  Table 5 

shows a comparison of the masses, and indeed there exists a distinct difference between the 

lensing and dynamical masses. 

 



16 

 

TABLE 5:  MASS DIFFERENCES 

ID Object ID Lensing Mass      Dynamical Mass      Mass Difference      
Percent 

Difference 

1 1237657189834621096 1.528E+11 4.559E+11 3.03E+11 198.4% 

2 1237652947992838246 3.554E+11 6.352E+11 2.80E+11 78.7% 

3 1237666340797153365 9.915E+10 5.314E+11 4.32E+11 436.0% 

4 1237652901299814497 6.640E+11 1.569E+12 9.05E+11 136.3% 

5 1237649963533926655 2.794E+10 5.909E+10 3.12E+10 111.5% 

6 1237660957571940755 3.004E+11 5.153E+11 2.15E+11 71.5% 

7 1237657630585585808 1.479E+11 4.458E+11 2.98E+11 201.4% 

8 1237650796753322325 4.641E+11 1.413E+12 9.49E+11 204.5% 

9 1237660669813129348 1.777E+11 4.483E+11 2.71E+11 152.3% 

10 1237661065488761132 3.580E+11 6.593E+11 3.01E+11 84.2% 

11 1237653663647727743 7.380E+10 1.062E+11 3.24E+10 43.9% 

12 1237657632727302311 4.656E+11 1.032E+12 5.66E+11 121.6% 

13 1237657874332385424 2.114E+11 4.859E+11 2.75E+11 129.8% 

14 1237654601563373760 8.510E+10 1.515E+11 6.64E+10 78.0% 

15 1237661355924586681 2.820E+11 3.656E+11 8.36E+10 29.6% 

16 1237654605324550300 6.760E+10 1.519E+11 8.43E+10 124.7% 

17 1237657610723655845 1.245E+11 1.967E+11 7.22E+10 58.0% 

18 1237657590318432374 1.122E+11 2.227E+11 1.11E+11 98.5% 

19 1237658800422518913 9.857E+10 2.442E+11 1.46E+11 147.7% 

20 1237655109449220224 1.439E+11 3.619E+11 2.18E+11 151.5% 

21 1237658492814360790 2.033E+11 3.814E+11 1.78E+11 87.6% 

22 1237671128051220497 2.124E+11 9.264E+11 7.14E+11 336.2% 

23 1237661355931730052 1.353E+11 1.8051E+11 4.52E+10 33.4% 

24 1237654604261228656 2.033E+11 3.874E+11 1.84E+11 90.6% 

25 1237658611984433262 3.084E+11 8.040E+11 4.96E+11 160.7% 

26 1237658609296343089 1.622E+11 6.447E+11 4.83E+11 297.5% 

27 1237661972796014740 1.860E+11 4.474E+11 2.61E+11 140.5% 

28 1237671762641485915 2.286E+11 4.492E+11 2.21E+11 96.5% 

29 1237651252040761551 3.449E+11 7.577E+11 4.13E+11 119.7% 

30 1237648704589136004 1.148E+11 2.414E+11 1.27E+11 110.3% 

31 1237655371441832114 4.021E+10 1.464E+11 1.06E+11 264.1% 

32 1237661874024677506 7.090E+11 1.148E+12 4.39E+11 61.9% 

33 1237674478123417869 1.268E+11 6.007E+11 4.74E+11 373.7% 
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TABLE 5:  MASS DIFFERENCES cont. 

ID Object ID Lensing Mass      Dynamical Mass      Mass Difference      
Percent 

Difference 

34 1237654879128977672 6.771E+10 9.892E+10 3.12E+10 46.1% 

35 1237655691403657326 9.408E+10 3.653E+11 2.71E+11 288.3% 

36 1237655693018726805 3.183E+11 6.482E+11 3.30E+11 103.6% 

37 1237654949985321081 1.031E+11 2.184E+11 1.15E+11 111.8% 

38 1237661388689899825 3.712E+11 5.248E+11 1.54E+11 41.4% 

39 1237648672922862552 2.776E+11 6.366E+11 3.59E+11 129.3% 

40 1237655130375586208 6.279E+11 6.920E+11 6.41E+10 10.2% 

41 1237651715335127272 2.220E+11 3.506E+11 1.29E+11 57.9% 

42 1237656495644541104 3.081E+11 7.688E+11 4.61E+11 149.5% 

43 1237652900743938211 1.296E+11 4.805E+11 3.51E+11 270.8% 

44 1237663784195326209 2.712E+11 4.592E+11 1.88E+11 69.3% 

 

TABLE 5:  The stark difference between the masses becomes immediately evident when looking at the 

percent difference.  Treating the lensing and dynamical masses as the “theoretical” and “experimental” 

values in a standard science experiment, the percent difference skyrockets in some cases, going well 

beyond the 30% predicted by Zhao et al. 2011a.  This could be caused by assumptions made in 

deriving the formula for the dynamical mass.   

 

 

The percent difference was calculated by finding the quotient of the difference and the lensing 

mass.  According to the theory, the lensing mass is unaltered by the addition of a modifying term 

to the Einstein-Hilbert action.  This makes it the “theoretical” value with which to compare the 

dynamical mass, or “experimental” value.  Zhao et al. 2011a predicted the difference to be a 

maximum of 30% of the lensing mass, a far cry from the percent differences found in Table 5.  

Even taking into account the uncertainties of calculating each mass does not rectify the enormous 

difference.   

 

One possible explanation lies in the assumptions used when calculating the dynamical mass.  

While the method for approximating mass is correct, it typically works best for elliptical 

galaxies.  Spiral galaxies behave differently, rotating quicker than their older elliptical cousins.  

Developing a new mass equation and positively identifying each individual galaxy may result in 

a more accurate depiction of the system.  Looking at Bolton et al. 2008a reveals that four of the 

44 galaxies were identified as late-type spiral galaxies.  Further literature searches are required to 
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find a suitable replacement for the dynamical mass equation.  Equation (20) includes the 

coefficient of 5 out front.  Called the degree of virialization, this parameter is chosen based on 

the type of galaxy being analyzed.  A smaller factor would yield a less drastic difference.   

 

Velocity dispersions could also be a source of significant error.  The orientation of the galaxy 

relative to the line of sight affects how well the velocity dispersion is measured.  While the 

measurements may have been relatively precise, the accuracy may have been skewed due to the 

galaxy’s orientation.  Unfortunately the only way to correct this is to better understand the 

positioning of the galaxy when measuring the velocity dispersion.   

 

Even though the percent difference in the masses was found to be far greater than predicted by 

Zhao et al. 2011a, it is still possible to search for an environmental dependence in the mass 

differences.   

 

6.  DEFINING A NEIGHBORHOOD 

 

In order to determine if the difference between the lensing and dynamical masses is dependent 

upon the mass density of a region, it becomes necessary to define the volume of an environment, 

with the environment being defined as the region surrounding the lensing galaxy.  Zhao et al. 

2011a prescribes looking for the nearest neighbor of equal or greater mass as a measure of 

regional density.  As the distance to the next massive neighbor decreases, the regional density 

increases.  When comparing galactic masses in a computer simulation, this method seems sound; 

however, when attempted with observational data, the process becomes too involved for the 

scope of this project.  Determining the masses of neighboring galaxies either requires a lensing 

system as previously described or velocity dispersions to obtain the dynamical mass.  

Unfortunately, not all galaxies have a source light behind them to show the effects of 

gravitational lensing.  If the dynamical mass is truly environmentally dependent as theorized, 

then the dynamical masses would not serve as an independent measure, making this option for 

measuring mass impossible.  This leaves few other options for finding the nearest neighbor using 

galactic masses.   
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6.1  CYLINDERS IN SPACE 

 

The end goal is to measure the density, or mass contained within a volume.  Taking a direct 

approach involves taking a number count of galaxies within a specified volume surrounding each 

target galaxy.  If the volumes are equal for each galaxy, then a comparison can be made for each 

galactic neighborhood.  Ideally, the volume would be spherically symmetric.  Trying to model a 

sphere off axis in the spherical coordinate system used to map the Universe is difficult to 

achieve.  This led to the use of cylindrical volumes around each target galaxy.   

 

The cylinders were constructed by first drawing a circle of radius one megaparsec around the 

galaxy.  Because distances in space transverse to the line of sight appear to vary based on how 

far from Earth they intersect the line of sight, it became necessary to calculate a different radius 

in arcseconds for each target galaxy.  This involved using the angular diameter distance of the 

target galaxy to determine the number of arcminutes one megaparsec subtends at the galaxy’s 

distance.  Unfortunately, the angular diameter distances used previously in finding the masses 

were based on spectroscopic redshifts.  When defining the environment, it is necessary to switch 

to a different measurement of redshift called the photometric redshift.  Spectroscopic redshifts 

are determined by examining the emission and absorption lines of a galaxy and matching them to 

a known spectrum, yielding fairly accurate results.  Photometric redshifts rely on information 

from the color filters to determine the redshift, which is less accurate than with spectroscopy.  A 

quick glance at the difference shows as much as a 30% difference between the two.  Even so, 

photometric redshifts are easier to take and are more available for fainter galaxies [SDSS3.org].  

Within the SDSS database, not all objects have spectroscopic redshifts available, making the 

photometric redshift a mandatory component when searching for all neighbors.   

 

Working with SDSS data, it also became easier and more efficient to obtain the angular diameter 

distance from the luminosity distance using the following relationship [Carroll and Ostlie 2007]: 

 

                 (21) 

 

where      is the luminosity distance,      is the angular diameter distance, and   is the 

photometric redshift.  The luminosity distance is determined through the apparent and absolute 
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magnitudes (or relative and absolute brightness) of the galaxy.  While luminosity distances are 

good when working with magnitudes and luminosities, the angular diameter distance is closer to 

the true physical distance to the galaxy.  Obtaining this distance requires a bit more work than 

before, but using this method of determining the angular diameter distance standardizes the 

parameters used when defining an environment.  This ensures better results in the end since all 

values are calculated from the same components.   

 

The length of the cylinder was made using the newly recalculated angular diameter distance such 

that the diameter and length were equal.  Because the lengths are measured radially from Earth, 

the cylindrical shapes are technically conical sections.  This approximation is acceptable since 

the redshifts of the sample galaxies are similar to each other, making the cylindrical volumes 

nearly identical. 

 

6.2  NEIGHBORS YOU CAN COUNT ON 

 

Within each of these cylinders, the total number of known galaxies was tallied.  At first glance, 

the galactic population is redshift-dependent, meaning that as the redshift increased, fewer 

galaxies were found in each volume.  This is due to the galaxies’ apparent magnitudes, which are 

a function of their brightness and distance away from Earth.  Two galaxies that are equally bright 

will have very different apparent magnitudes if one is much farther away from the observer than 

the other.  Telescopes have limitations on the amount of light they can gather, which means a 

galaxy that is far away may not be detected, while its identical twin many parsecs closer is 

detectable.  Thus, the cylinders surrounding galaxies closer to Earth have more detectable 

neighbors than those regions further away.  Correcting for this requires a magnitude cut to screen 

out faint galaxies detectable in near neighborhoods, but invisible in farther regions.  To 

accomplish this, all neighbor galaxies included in the population count must have an absolute 

magnitude brighter than the dimmest galaxy detectable in the highest redshift cylinder, where the 

absolute magnitude of an object is a standard set as the apparent magnitude at a distance of 10 

parsecs away.  An approximation for the absolute magnitude of objects at low redshift requires 

the following [SDSS3.org]: 
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                          (22) 

 

where    is the absolute magnitude,    is the apparent magnitude, and   is the photometric 

redshift.  With the magnitude system, brighter objects have a more negative value.  SDSS reports 

an apparent magnitude limit of 22.2 [SDSS3.org].  The farthest galaxy in the sample has a 

redshift of 0.34.  Therefore, the only objects within the region counted toward the population 

must have an absolute magnitude value more negative than -13.6. 

 

Creating a single cylinder around each galaxy has the disadvantage of excluding galaxies that 

may only be partially contained within the region.  By creating nested cylinders increasing 

volume, the mass density of the region becomes clearer.  If the galaxy is sitting inside of a tightly 

packed cluster for instance, the interior cylinders will affect the population count more than the 

outer cylinders.  These environmental divisions can be seen more clearly in Figure 3.   

 

FIGURE 3:  CYLINDRICAL VOLUMES 

 

 

FIGURE 3:  This image is a graphical representation of the cylinders used to define regions 

around each of the sample galaxies, represented by the orange dot.  Cylinders with equal length 

and diameter are drawn around each galaxy, and a count of the number of galaxies is made.  This 

helps determine the density of the environment in which the target galaxies reside.  Nesting the 

cylinders helps deal with galaxies that are only partially in the defined volume.  This nesting 

technique can also yield more information about where a galaxy sits relative to most of its 

neighbors.   
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Cutting into the ends of the cylinders like a pie and dividing it into quadrants allows for the 

determination of where the galaxy sits relative to the rest of its galactic neighbors.  Looking at 

this information can indicate if the galaxy is symmetrically surrounded, or if a large portion of 

the mass lies off to one side.  This information would be useful in future studies where additional 

information would help define the environment more accurately.   

 

The final galaxy counts and population densities are seen in Table 6.  For brevity, the cylinders 

represented have increasing radii of 2Mpc to show the increased number count over distance.   

  

 

TABLE 6:  POPULATION DENSITIES 

ID Object ID 
2Mpc 6Mpc 10Mpc 

Population Density Population Density Population Density 

1 1237657189834621096 1 0.1592 15 0.0884 74 0.0942 

2 1237652947992838246 0 0.0000 7 0.0413 47 0.0598 

3 1237666340797153365 2 0.3183 16 0.0943 77 0.0980 

4 1237652901299814497 0 0.0000 15 0.0884 77 0.0980 

5 1237649963533926655 1 0.1592 6 0.0354 30 0.0382 

6 1237660957571940755 0 0.0000 7 0.0413 45 0.0573 

7 1237657630585585808 0 0.0000 12 0.0707 49 0.0624 

8 1237650796753322325 1 0.1592 19 0.1120 71 0.0904 

9 1237660669813129348 1 0.1592 14 0.0825 63 0.0802 

10 1237661065488761132 1 0.1592 13 0.0766 69 0.0879 

11 1237653663647727743 0 0.0000 6 0.0354 43 0.0547 

12 1237657632727302311 1 0.1592 13 0.0766 61 0.0777 

13 1237657874332385424 1 0.1592 13 0.0766 47 0.0598 

14 1237654601563373760 0 0.0000 13 0.0766 52 0.0662 

15 1237661355924586681 1 0.1592 16 0.0943 53 0.0675 

16 1237654605324550300 1 0.1592 17 0.1002 62 0.0789 

17 1237657610723655845 1 0.1592 20 0.1179 102 0.1299 

18 1237657590318432374 1 0.1592 17 0.1002 75 0.0955 

19 1237658800422518913 0 0.0000 5 0.0295 35 0.0446 

20 1237655109449220224 1 0.1592 22 0.1297 76 0.0968 

21 1237658492814360790 0 0.0000 9 0.0531 58 0.0738 
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TABLE 6:  POPULATION DENSITIES cont. 

ID Object ID 
2Mpc 6Mpc 10Mpc 

Population Density Population Population Density Population 

22 1237671128051220497 1 0.1592 18 0.1061 68 0.0866 

23 1237661355931730052 0 0.0000 17 0.1002 55 0.0700 

24 1237654604261228656 2 0.3183 26 0.1533 76 0.0968 

25 1237658611984433262 0 0.0000 12 0.0707 58 0.0738 

26 1237658609296343089 0 0.0000 6 0.0354 46 0.0586 

27 1237661972796014740 0 0.0000 18 0.1061 59 0.0751 

28 1237671762641485915 1 0.1592 10 0.0589 61 0.0777 

29 1237651252040761551 0 0.0000 14 0.0825 62 0.0789 

30 1237648704589136004 1 0.1592 20 0.1179 65 0.0828 

31 1237655371441832114 0 0.0000 13 0.0766 41 0.0522 

32 1237661874024677506 2 0.3183 16 0.0943 81 0.1031 

33 1237674478123417869 1 0.1592 16 0.0943 66 0.0840 

34 1237654879128977672 2 0.3183 7 0.0413 34 0.0433 

35 1237655691403657326 0 0.0000 6 0.0354 22 0.0280 

36 1237655693018726805 0 0.0000 13 0.0766 53 0.0675 

37 1237654949985321081 0 0.0000 11 0.0648 51 0.0649 

38 1237661388689899825 1 0.1592 17 0.1002 58 0.0738 

39 1237648672922862552 1 0.1592 13 0.0766 46 0.0586 

40 1237655130375586208 3 0.4775 15 0.0884 61 0.0777 

41 1237651715335127272 0 0.0000 15 0.0884 68 0.0866 

42 1237656495644541104 0 0.0000 9 0.0531 61 0.0777 

43 1237652900743938211 0 0.0000 6 0.0354 42 0.0535 

44 1237663784195326209 1 0.1592 14 0.0825 51 0.0649 

 

TABLE 6:  This table shows the number of galaxies counted within three cylindrical volumes 

surrounding each target galaxy.  The cylinders in this table are of diameter and length 2Mpc, 

6Mpc, and 10Mpc.  The density is simply the quotient of the population count and the volume 

and is measured in galaxies per cubic megaparsec.   

 

 

Examples of sample galaxy neighborhoods are seen in Figure 4. 
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FIGURE 4: GALACTIC NEIGHBORHOODS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4:  The images on the top show galaxies (3) on the left and (32) on the right in 

relatively dense regions.  The gray and yellow fuzzy ovals are galaxies, while the red, white, and 

blue dots are stars in our own galaxy, which have no impact on the density.  Galaxies (5) and 

(34) are shown in the bottom left and right, respectively.  The majority of the objects, including 

the two bright red bodies on the left of (5), are stars, making this a low density region.  These 

images show that the cylinders are a decent representation of galaxy density.   

Photos courtesy of Sloan Digital Sky Survey 
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The effects of      theories of gravity disappear on the small scale due a proposed chameleon 

mechanism which is suppressed in areas of higher matter density, like on Earth.  While not all 

galaxies are the same mass, finding a population density of galaxies introduces a way of 

measuring the environmental matter density relative to other galactic regions.     

 

7.  SEARCHING FOR AN ENVIRONMENTAL DEPENDENCE 

 

Checking for the environmental dependence is easy now that all components have been 

calculated.  The result of graphing the mass differences and regional densities can be seen in 

Figure 5.  Taking the mass differences in Section 5 and comparing them to the corresponding 

population densities of Section 6 reveals a slight dependence, though nothing conclusive.  The 

trend lines are negative, which agree with Zhao et al 2011a.  As density increases, the mass 

difference decreases.  Even so, the plots most closely resemble scatter plots, with no real 

convergence.  Reasons for this are discussed in Section 8, but wild variations in the mass percent 

difference and small number statistics severely hinder the final results.   

 

To confirm these results, 30 galaxies were chosen at random from the sample of 44.  The 

dynamical and lensing mass percent difference was compared to the population density, with 

new slopes being calculated.  This was repeated 99 times to somewhat randomize the samples.  

The average slope for this test remained the same as the initial set.  If the sample set of galaxies 

chosen for this project is truly representative of galactic populations at that redshift, the 

randomized slopes seem to confirm the existence of a slight dependence of the mass percent 

difference on the environmental matter density.   
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FIGURE5:  ENVIRONMENTAL DEPENDENCE 
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FIGURE5:  ENVIRONMENTAL DEPENDENCE (cont.) 

 

 

FIGURE 5:  This graph shows the relationship between the mass percent difference and the 

population densities of the region surrounding the sample galaxies using cylinders of 2Mpc, 

6Mpc, and 10Mpc diameters.  The trend lines have small slopes, and with just visual inspection, 

the graph looks most like a scatter plot.  The lack of a definite trend leads to a null conclusion.    

 

 

 

8.  FINAL RESULTS 

 

Based on the plots in Figure 5, it is difficult to claim success in either direction.  The slopes of 

the trend lines seem to confirm the theories predicted by modified gravity, though with 

incredibly weak fits.  The coefficients of determination for each of the fit lines were well below 

1%.  This is in part due to the large variation in percent mass differences found in Section 5, 

along with the small sample size of 44 galaxies.  Due to the large amounts of uncertainty and the 

lack of convergence, no definitive conclusions can be drawn from the completed research.   
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9.  CONCLUSION 

 

While no definitive answers can be found in the above description, the project was successful in 

showing that the parameters exist for searching for modified gravity.  Better techniques of 

defining the environment and more accurate models in the mass equations should yield tighter 

results.  The methods presented in this paper were just one combination of several possible 

techniques.  Classifying each individual galaxy and using mass equations that better model the 

specific galaxy type would better represent the dynamical mass.  Using a combination of 

luminosity and distance parameters may help define a more consistent neighborhood and 

eliminate the need for the error-prone photometric redshifts.  Learning to write more effective 

queries for data retrieval from the SDSS database also opens new doors.  Such queries would 

allow for finding ways around the maximum data limit that can be downloaded, solving some 

issues with the nearest neighbor technique prescribed by Zhao et al 2011a and mentioned in 

Section 6.  A much larger sample size may also reveal a stronger correlation.  Future work is 

warranted given the large amount of available data and the potential to test other combinations 

for determining the masses and environments.   
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APPENDIX A: COMMON DEFINITIONS 

 

Angular Diameter Distance:  This representation of physical distance is found by dividing the 

actual size of an object by the angle it subtends (Carroll & Ostlie 2007).   

 

 

Arcsecond:  With 360° in a circle, an arcsecond is 1/3600
th

 of a degree and denoted by “ 

 

 

Line of Sight:  The line of sight is an imaginary line extending straight out from an observer on 

Earth.   

 

 

Luminosity Distance:  The luminosity distance is a function of luminosity and flux, and is best 

used at small redshifts (Carroll & Ostlie 2007).   

 

 

Parsec:  A parsec is a unit of distance measured when 1 arcsecond is subtended by 1 

astronomical unit, which is defined as the distance between the Earth and Sun.  

 

 

 

 

 

 

 

 

 

 

 

 

Redshift:  The expansion of the universe causes light to be stretched as it travels through 

spacetime.  The wavelengths increase as a result, “reddening” the light.  Redshift is often used as 

both a conceptual measure of time and distance.   

 

 

Solar Mass =           and denoted by        (Sparke & Gallagher 2007) 

 

 

Velocity Dispersion: The velocity dispersion is a general measure of the motions of stars within a 

galaxy.  These are measured spectroscopically by looking for Doppler shifts in the light coming 

from stars as they rotate around the galaxy (Carroll & Ostlie 2007).   

 

 

 

1AU 

1 parsec 

1” 


